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Time delay distribution in Bragg gratings
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A layer-by-layer analysis of the time delay of both reflected and transmitted light in one-dimensional
photonic band-gap structures is developed and applied to uniform Bragg gratings. An effective Fabry-Pe´rot
cavity is associated with every layer along the Bragg grating, multiple paths with a well defined layer traversal
time are identified, and the average time is computed, introducing an appropriate weighting factor that accounts
for interference between different paths. The analysis presented leads directly to a complex-valued time delay
whose real part is shown to be equivalent to the classic phase time delay. Physical meaning is also given to the
imaginary part. The local dwell time, interpreted as the average time spent by light in the layer independently
of the final~transmitted or reflected! state, is proved analytically to be related to the energy density distribution
when small index change gratings are considered. The time delay evolution is derived at different wavelengths
and the nonuniform distribution along the grating is discussed. Nonintuitive features such as superluminal
transmission time delay for propagation inside the band gap and negative reflection time delay close to
transmission resonances are addressed. Finally, the effect of introducing a small perturbation in the structure is
shown to be directly related to the local time delay and is proposed as a possible experimental measurement
scheme for both its real and imaginary parts.
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I. INTRODUCTION

The propagation of light in one-dimensional periodic
quasiperiodic media has been extensively studied, mainl
the context of the fundamental properties of photonic ba
gaps@1#. Multilayer mirrors, corrugated waveguides, and
ber Bragg gratings are among the most common implem
tations of such structures. These scattering structures
characterized by a high dispersion around the stop b
edges and show significant variation in the group velocity
the wavelength is varied across the stop-band@2#. Compared
to free space propagation, the group velocityvg can be either
increased for in-band-gap propagation or decreased clos
transmission resonances, and significant time delay va
tions ~wheret5L/vg) can be achieved with the introductio
of nonuniform perturbations or defects@3#.

However, only the time delay characteristic of the ent
scattering region has been analyzed so far. Typically, a tr
fer matrix approach~based on coupled wave theory for fib
gratings@4,5# or on the actual layer parameters for multila
ers @6#! is used to calculate the reflection and transmiss
coefficients and the time delay~phase time! is obtained by
differentiation of the global phase retardationu with respect
to v @3#. No knowledge of the local properties is gaine
Questions such as ‘‘How is the time delay accumulated al
the length?’’ and ‘‘Are there sections that are likely to affe
the light propagation more than others?’’ are important
both physical and technological reasons. Only a layer-
layer analysis of reflected and transmitted light behavior
give such insight.

The object of this paper is the derivation of analytic
expressions for such local time delaystR(s) and tT(s) for
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reflected and transmitted light, respectively, their applicat
to the simple but significant case of a uniform grating, a
the analysis of locally perturbed structures as a possible
perimental route to measuring them. It is worth noting th
the derivation presented is structure independent and ca
applied to any scattering medium, either uniform or nonu
form. The results obtained are likely to be helpful in ener
storage characterization~important in active device design
i.e., distributed Bragg reflector and distributed feedback
sers@7#!, design robustness analysis~a device is more sensi
tive to imperfections where the light actually dwells th
most!, and obviously in the design of devices with a partic
lar dispersion~i.e., dispersion compensating fiber Bragg gr
ings@8#!. Moreover, the approach derived can also contrib
to the broad discussion about ‘‘traversal time under a pot
tial barrier,’’ which applies to both electromagnetic evane
cent propagation and quantum particle tunneling~see@9# and
references therein for an exhaustive review! because of the
analogy between the Helmholtz and the time-independ
Schrödinger equations@10#.

In Ref. @11#, a multilayer is considered and a Fabry-Pe´rot-
like picture is proposed for layer-by-layer characterizatio
The structure is divided into two different sections preced
and following the currently investigated layer, and multip
reflections are experienced inside this effective cavity bef
either transmission or reflection takes place. The probab
of each path is calculated through the reflectivityR and the
transmissivityT, and since each possible path has a w
defined associated transit time the average dwell time in
layer can be evaluated. In this analysis the propagating fi
is treated as a classical particle and the scattering proba
ties are calculated by wave theory. But light is best descri
by a wave form and its field~probability amplitude! evolu-
tion. As pointed out elsewhere@12#, the fictitious particle
picture ~‘‘photon’’ ! can still be used, but only taking into
account that it has to be associated with a probability am

on
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FIG. 1. Possiblekth pathszf ,k inside the grat-
ing due to multiple scattering, leading to eithe
final transmission~left! or reflection~right!.
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tudeuc&→E, i.e., a complex number with a phase that var
spatially. Moreover, ‘‘if a particle can reach a final state
two possible routes, the total amplitude for the process is
sum of the two routes considered separately’’@13#. This
means that, considering fieldsE ~phase information retained!
and not intensitiesI in the Fabry-Pe´rot-like picture, the infi-
nite series of different paths leading to either transmission
reflection can be independently identified and their interf
ence effects taken into account. Since a precise traversal
is associated with every single path, the average time d
of both transmitted and reflected photons can be evaluate
each grating section.

This approach was first introduced in Refs.@14,15#. It has
recently been used by Leeet al. to analyze a single Fabry
Pérot cavity @16#, and it was shown to be an application
Feynman paths in the spirit of Sokolovski and Connor@17#.
A close relationship with the weak measurement theory
tunneling times developed by Steinberg@18# was also found.

In Sec. II, the local time delay will be defined and an
lytical expressions presented. The energy velocity will a
be considered and the relationship with previously defin
time delays discussed. The actual derivations are give
Appendix A, and the equivalence between the proposed
proach and the phase time is analytically proved for unifo
gratings in Appendix B. In Sec. III, the derived expressio
will be applied to a uniform grating and the correspondi
time delay distributions will be analyzed. In Sec. IV, th
effects of grating perturbations are considered and show
be related to the time delay obtained. This approach is p
posed as a possible measurement method for local time
lay.

II. DERIVATION OF TIME DELAY DISTRIBUTION

A. Approach to time delay computation

The mean traversal time of a certain section inside a s
tering medium will be computed using the following defin
tion @15#:

t f~s!5
^c f u t̂ f~s!uc f&

^c f uc f&
5

E t̂ f~s!Ef* ~j!Ef~j!dj

E Ef* ~j!Ef~j!dj

. ~1!

uc f& is the final state to be characterized,Ef is the associated
electric field,s is the considered layer in the scatterer, and
integration is performed over the timej. In a grating of
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lengthL, the final state isucT&→Ef5ET(j,L) for the trans-
mission time delay anducR&→Ef5ER(j,0) for the reflection
time delay, where the fields are evaluated at timej and in
positionz5L or 0, respectively. The traversal time operat
through s can be defined once the actualkth path zf ,k
5zf ,k(j) to reach the considered final stateuc f& at timej is
known:

t̂ f ,k~s!5E Qs@zf ,k~j!#dj, Qs@zf ,k#5H 1 if zf ,kPs,

0 if zf ,k¹s,
~2!

whereQs selects only the portion of the path spent inside
investigated layers. Given a possible pathzf ,k(j), the related
time delay is well defined and unique.

As Fig. 1 shows, in a grating the distributed scatteri
produces a continuum of possible different trajector
$zf ,1 ,zf ,2 , . . . ,zf ,k , . . . % for each final stateuc f& and there-
fore

t̂ f~s!5E
k
t̂ f ,k~s!d f ,kdk, ~3!

whered f ,k means that the time delay operatort̂ f ,k(s) has to
be associated only with the contributionuc f ,k(s)& of the path
zf ,k to the final stateuc f&:

t̂ f~s!uc f~s!&5E
k
t̂ f ,k~s!d f ,kuc f~s!&dk

5E
k
t f ,k~s!uc f ,k~s!&dk ~4!

with time delay eigenvaluet f ,k(s). Using Eq.~4!, Eq. ~1!
may be written in a more concise way:

t f~s!5E
k
t f ,k~s!

^c f uc f ,k~s!&

^c f uc f&
dk

5E
k
t f ,k~s!

E Ef* ~j!Ef ,k~j!dj

E Ef* ~j!Ef~j!dj

dk

5E
k
t f ,k~s!Pf ,kdk, ~5!
4-2
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where^c f uc f ,k(s)& is the projection of each field compone
uc f ,k(s)& onto the global fielduc f(s)&. This means that eac
t f ,k(s) has to be weighted by how much the correspond
path contributes to the global field. In Eq.~5!, a generally
complex probabilityPf ,k can be formally identified, since i
can be directly shown that(kPf ,k51. Indeed, thet̂ f(s) op-
erator so defined is non-Hermitian due to the nonorthogo
ity of the final state componentsuc f ,k(s)&. Therefore the oc-
currence of complex probabilities and complex eigenval
t f(s) is expected@18#. The related physical picture corre
sponds to the interference between different paths at e
side of the structure when coherent fields are conside
@15#. Introducing a complex-valued time delay may see
odd and nonphysical, but in Sec. III it will be shown th
Re$t f(s)% is associated with well established time del
definitions. In Sec. IV a physical meaning will also be giv
to Im$t f(s)% @16#.

The approach described leads to the computation of
‘‘center of mass’’ arrival time if applied to pulse propagatio
and to the whole grating length@14#. The main advantage o
the proposed formalism is the possibility of analyzing t
time delay characteristics of the structure layer by layer, p
vided that all the possible pathsuc in&→uc f& and the corre-
sponding contributionsuc f ,k&→Ef ,k(j) are identified.

Equation~5! looks different from expression~7! reported
in Ref. @15#, where the same time delay definition is appli
to propagation through a dielectric slab, i.e., a Fabry-Pe´rot
cavity. However, it has been analytically verified that t
same final expressions are obtained by applying Eq.~5! to
the same scattering structure, but with less involved com
tations and with a clearer physical understanding. For
reason the Eq.~5! formalism will be used in the rest of th
study.

B. Fields and time delay computation

We start by considering an input fielduc in& entering the
structure as shown in Fig. 2 and a generic layers inside it.
The considered layer is treated in the following derivation
a free space propagation region, i.e., only straight trajecto
zf ,k(j) are possible insides. This approximation is valid as
long as the layer lengthDL(s) is small compared to the
inverse of the coupling constantk, which means that the
probability of a scattering event inside it is negligible.

FIG. 2. The selected layers ~shaded area! divides the structure
into three different regions. The reflectors on either side are f
characterized by reflection and transmission coefficients, while
layer s is characterized by its phase delayf ~free propagation ap-
proximation!.
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With respect tos, the grating can be seen as a Fabry-Pe´rot
cavity in which the left~labeled 1! and right ~labeled 2!
reflectors are fully characterized by their reflection and tra
mission coefficientsr and t shown in Fig. 2. The complex
coefficientsr 11 and t11 refer to forward propagating path
in the left reflector~left to right!, andr 12 and t12 to back-
ward propagating paths~right to left!. In a reciprocal me-
dium, the general relationt115t12 holds@19#. Note that the
transmission and reflection coefficients are dispersive
different for every considered layers, but the notationt
5t(v,s), r 5r (v,s) will be used later on for the sake o
simplicity. In the following analysis a monochromatic exc
tation uc in&→Ein5ej (bz2v0j) will be considered, i.e., stead
state conditions will be assumed, and only the lossless c
where the relationR1T5ur u21utu251 holds, will be ad-
dressed. It is also useful to introduce the round-trip reflect
coefficientr of the effective Fabry-Pe´rot cavity associated
with layer s:

r5r 12r 2ej 2f, ~6!

where f5bDL(s)5v0Dt0(s) is the phase delay for a
single pass through the layer, with layer lengthDL(s) and
layer time delayDt0(s)5DL(s)/veff5neffDL(s)/c.

As shown in Figs. 3~a! and 3~b!, a discrete set of possibl
paths $zf ,0 ,zf ,1 , . . . ,zf ,k , . . . % with a well defined time
t f ,k(s) spent inside the layers can be associated with bot
the transmitteducT& and reflecteducR& final states. Knowing
r and t expressions for the given structure~for instance,
through a transfer matrix approach@5,6,19#!, the final state
can be computed and expressed through itsuc f ,k(s)& compo-
nents. In transmission,

ucT&5uc in&t11t2ej f(
k50

`

rk ~7a!

5uc in&
t11t2ej f

12r
5uc in&tgr , ~7b!

y
e

FIG. 3. Possible paths leading to photon transmission~a! and
reflection ~b! according to multiple scattering. Note that in refle
tion ucR,0(s)& does not reach the layers ~shaded area!.
4-3
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wheretgr is the transmission coefficient of the whole gratin
With a similar analysis in reflection,

ucR&5uc in&F r 111t11r 2t12ej 2f(
k50

`

rkG ~8a!

5uc in&
r 111r 2~ t11 /t11* !ej 2f

12r
5uc in&r gr , ~8b!

where r gr is the total grating reflection coefficient. The e
pressions obtained with this approach are consistent
transfer matrix results, and each path componentuc f ,k(s)& is
clearly shown in Eqs.~7a! and ~8b!. This identification al-
lows us to perform a weighted average over all possible
terfering paths and to calculate the layer time delay acco
ing to Eq.~5!.

The detailed derivation of both transmitted and reflec
time delays is presented in Appendix A. The time de
tT(s) accumulated in layers by transmitted light is found to
be

tT~s!5
^cTu t̂T~s!ucT&

^cTucT&
5Dt0~s!

11r

12r
. ~9!

tT(s) is evaluated by taking into account that each field co
ponentucT,k(s)& in Fig. 3~a! experiences (2k21) passes in
the layer due to multiple scattering in the grating before
ing transmitted. An important feature of Eq.~9! is that the
real part of the transmission time delay is always positive
every layer, as shown by Eq.~A3a!. Equation~9! is a gener-
alization of Eq.~10! in Ref. @16#.

Starting from Eq.~8b!, the reflection time delaytR(s)
becomes

tR~s!5
^cRu t̂R~s!ucR&

^cRucR&

52Dt0~s!
T1

12r

r

r2R1
, ~10!

whereT1 and R1 are the left mirror transmissivity and re
flectivity, respectively. With reference to Fig. 3~b!, it is worth
noting that the time spent in layers by ucR,0(s)& is tR,0(s)
50 since these photons are reflected before reaching
layer, while for all the other field componentstR,k(s)
52kDt0(s). The real part oftR(s) can be shown to be
negative for certain wavelengths and in certain grating p
tions. A possible justification of this nonintuitive result wi
be given in Sec. III, describing uniform grating calculation

Using Eqs.~9! and ~10!, the overall timet tot(s) spent in
layer s by a photon can be derived, independently of
transmitted or reflected final state. Since the final states
different, the two fields do not interfere andt tot(s) is given
by the average value weighted by each final state probab
~given by the transmissivityTgr and reflectivityRgr of the
whole grating! @13,20#:
03660
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t tot~s!5tT~s!Tgr1tR~s!Rgr

5Dt0~s!Tgr

11R2

12R2
, ~11!

where R2 is the right mirror reflectivity. It is important to
note that the total time delay so computed is always real
positive, despite the fact that the two independent com
nents are complex. The physical explanation of this disti
tive feature will be given in Sec. II C, wheret tot(s) will be
shown to be related to the energy density distribution ins
the scatterer. Equation~11! corresponds to the result pre
sented in Ref.@11#.

Sincet tot(s) is real, Eq.~11! can be expanded as

t tot~s!5Re$tT%Tgr1Re$tR%Rgr , ~12a!

05Im$tT%Tgr1Im$tR%Rgr , ~12b!

where the corresponding expressions for the real and im
nary parts of the time delay are given by Eqs.~A3! and~A7!.
Equation~12b! is a direct consequence of energy conser
tion, as will be shown in Sec. IV.

From the previously calculated expressions, it is poss
to characterize the time delay of the entire grating by sim
summing up all the individual layer contributions:

t f5(
s

t f~s! ~13!

wheref stands forT, R, or ‘‘tot.’’ The equivalence of the rea
part of Eq.~13! for reflected and transmitted light with th
classic phase time delay@3# cannot be proved by a gener
analytic derivation. An analytic proof can be obtained only
the uniform grating case, and it is derived in Appendix B

C. Energy distribution and dwell time

The electromagnetic energy density distributionU inside
the scatterer and the Poynting vectorSW ~related to energy
flux! can be easily derived knowing the field distribution
the various sections@21#:

U5 1
4 e0neff

2 uEW u21 1
4 m0uHW u2, ~14!

SW 5 1
2 Re$EW 3HW * %, ~15!

wheree0 andm0 are the vacuum permittivity and permeab
ity and neff is the effective refractive index.

Considering purely transverse fields, the electric fieldE
5E0ej (bz2v0j) is scalar and can be calculated in every po
tion inside the structure with the multiple scattering pictu
described above, which is equivalent to the transfer ma
method. Considering the fields at the end of each layer,
forward and backward propagating fieldsE1 andE2 in layer
s are

E1~s!5Ein

t11ej f

12r
, ~16a!
4-4
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E2~s!5E1~s!r 2 , ~16b!

and, as shown by normal mode analysis@22,23#, the total
electric and magnetic fields are expressed in term of th
components as follows:

Etot~s!5E1~s!1E2~s!, ~17a!

H tot~s!5
b

v0m0
@E1~s!2E2~s!#. ~17b!

According to Eqs.~14!, ~16!, and~17!, the energy density
distribution along the grating is given by

U~s!5
1

2
e0neff

2 uEinu2Tgr

11R2

12R2
. ~18!

In Eq. ~18!, the longitudinal dependence of the effective r
fractive index inside the considered layers has not been ex
plicitly taken into account and the average valueneff is con-
sidered. This approximation is valid only for structures
which the refractive index contrast is small, such as fi
Bragg gratings. Typically, these gratings are centimeters l
and the refractive index change isdn'1024. Instead, in
multilayer structures which are only micrometers long a
havedn.1021, the local expression forneff5neff(z) has to
be used and slightly different results are obtained@24#. In
this case, the analytical equivalence presented in the foll
ing @see Eq.~20!# is not strictly valid.

Using Eqs.~15!, ~16!, and~17!, it is possible to evaluate
the net Poynting vector fluxS(s) inside the grating along the
propagation directionz:

S~s!5
b

2v0m0
uEinu2Tgr5SinTgr , ~19!

where Sin5 1
2 neffAe0 /m0uEinu2 is the flux of the incident

transverse wave. The Poynting flux is found to be cons
along the grating and related to the incoming fluxSin through
the grating transmissivityTgr , as expected because of ener
conservation in passive, lossless media under steady
conditions.

Using Eqs.~11! and ~18!, and taking into account tha
Dt0(s)5neffDL(s)/c, a simple manipulation gives

t tot~s!5
U~s!Dt0~s!
1
2 e0neffuEinu2

5
U~s!DL~s!

Sin
. ~20!

A direct relationship between the local total time delay p
viously defined and the energy density distribution inside
grating has been derived. Summing up over the gra
length according to Eq.~13!, the result for the total time
spent inside the grating by light is
03660
se

-

r
g

d

-

nt

ate

-
e
g

t tot5(
s

U~s!DL~s!

Sin

5

(
s

W~s!

Sin
5

W

Sin
5tD , ~21!

whereW(s)5U(s)DL(s) is the stored energy in layers and
W is the total stored energy. According to the definition giv
in Ref. @25#, tD can be identified with the dwell time insid
the structure. It has been applied to electron quantum tun
ing by Büttiker @26# and extended to optical tunneling b
Steinberg@10#. In @27#, the dwell timetD is well described as
‘‘the ratio between the total integrated particle densityN in
the barrier region divided by the incident currentj.’’ In op-
tics, the number of stored photons~i.e., the stored energyW)
corresponds toN and the incident photon flux~i.e., the Poyn-
ting vector! to j, and Eq.~21! is obtained. The correspon
dence of the dwell time with the total time delayt tot com-
puted by the multiple path approach in the small inde
contrast limit is an important result. It is an analytical pro
of the validity of the proposed multiple path approach in th
approximation.

Physically, the dwell time so defined can be related to
time necessary to build up the final photon density in
grating, which under steady state conditions also correspo
to the time to empty the cavity and is related to the cavityQ
factor. To our knowledge, this definition has only been a
plied to the analysis of the entire grating@26,10#. But a local
cavity can also be associated with each layer of len
DL(s) inside the grating. In Appendix C, the same physic
meaning is also attributed totD(s)5t tot(s), defined for each
layer by Eq.~20!. Therefore,tD(s) can actually be inter-
preted as a local dwell time inside the grating.

Despite the formal parallelism between the electron wa
functionC(s) and the electric fieldE(s) outlined in@10# and
derived from the Schro¨dinger and Maxwell equations ana
ogy, it must be stressed that Eq.~21! is the correct extension
of the dwell time to electromagnetism. Indeed, the energy
an electromagnetic wave is stored in both the electric
magnetic fields. ConsideringE only ~as suggested in Ref
@10#! would produce an extra term related to the se
interference between forward and backward propaga
components in Eq.~21!, and the agreement and physical i
sight obtained would be lost.

In Ref. @21#, the energy velocity inside each layer wa
defined asve(s)5S/U(s), which after substituting Eqs.~18!
and ~19! becomes

ve~s!5
c

neff

12R2

11R2
<

c

neff
. ~22!

The local energy velocity is clearly related to the local stor
energy and to the Poynting vectorS5ST , which is an invari-
ant and represents the energy flux that passes along the s
ture and is finally transmitted. Equation~22! ensures that the
4-5
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FABIO GHIRINGHELLI AND MIKHAIL N. ZERVAS PHYSICAL REVIEW E 65 036604
energy velocity in a periodically perturbed medium is alwa
subluminal, i.e., less than the corresponding velocity in
unperturbed mediumc/neff .

On the contrary, the total time~dwell time! is by no means
a time of flight and is not related to any well defined ener
transport phenomena. It contains weighted average contr
tions from all photons present in layers, regardless of their
final state. Therefore, it lacks directionality and any veloc
associated with this time definition has no clear physi
meaning. As in Ref.@24#, a different expression for the loca
velocity vD(s) can be introduced using Eq.~21!:

vD~s!5
DL~s!

tD~s!
5

Sin

U~s!
5

S~s!

U~s!Tgr
5

ve~s!

Tgr
, ~23!

which can be shown to be superluminal under certain pro
gation conditions, namely, for small values ofTgr . However,
no violation of causality occurs since no real tunneling c
be associated withtD . This result is in agreement with
@28,29#, where pulse propagation simulations show that at
time does the intensity of the transmitted pulse exceed
incident intensity in the absence of the grating, i.e., energ
always propagating at subluminal velocity.

III. UNIFORM GRATING SIMULATIONS

The theoretical picture described has been applied
short and strong uniform grating of lengthL51000L, where
L is the grating period, refractive index modulationdn53
31023, and transmissivityTBragg.0.01 at the Bragg wave
length, to allow a reasonably short computational time.
described before, each layer has to be as short as possib
order to be effectively approximated by a nonperturbed
gion. In the following the grating has been split period
period and the single layer traverse timeDt0(s) has been
computed taking into account the average refractive inde

Figure 4 shows the real part of the integrated time de
obtained for a wavelength detuningDlP@0,5# nm with re-
spect to the Bragg wavelengthlBragg51550 nm. It should be
stressed thatt tot , Re$tT%, and Re$tR% are identical and su
perimposed. The corresponding transfer matrix result@5# is
essentially superimposed, as expected from the analy

FIG. 4. Time delay spectral characteristic computed using
~13! ~circles! and the phase derivative approach~solid line! for a
uniform grating withL51000L, dn5331023, TBragg.0.01, and
Bragg wavelengthlBragg51550 nm. Re$tT%, Re$tR%, and t tot are
identical and superimposed.~The time delay evolution in the grat
ing for the four marked wavelengths is described in Fig. 5.!
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equivalence proved in Appendix B, with minor differenc
(,0.01 ps! over the whole analyzed bandwidth due to t
finite length of each layer.

The main advantage of the proposed approach is the
sibility of analyzing the contribution of every single sectio
to the overall time delay. In Fig. 5 the longitudinal distrib
tion of the time delay has been computed for the four wa
lengths indicated in Fig. 4, for both transmitted and reflec
light and for the layer dwell time. Again, it has to be stress
that the integratedt tot , Re$tT%, and Re$tR% are identical,
despite the different spatial distributions. For the sake
clarity, an effective number of passesN(s) in the selected
layer s is shown in Fig. 5, where

NT~s!5
Re$tT~s!%

Dt0~s!
, NR~s!5

Re$tR~s!%

Dt0~s!
. ~24!

Intuitively, the local time delay is expected to depend on
single pass time delayDt0(s) and on the average number o
passesN, since the layer is considered as a nonscatter
region andN accounts for the multiple reflections in the e
fective cavity. This can easily be visualized in Figs. 3~a! and
3~b!.

It is worth pointing out that the number of passes at
grating ends (z50 andL) is always fixed irrespective of the
wavelength, since no multiple reflections occur~the associ-
ated effective cavity hasr50). Transmitted light simply
crosses these layers once during propagation toward the
of the grating@NT(0)5NT(L)51#. Reflected light always
passes twice through the very beginning of the grating@it
enters the grating and is finally bounced back,NR(0)52#,
while it never reaches the very end@NR(L)50# since other-
wise it would never be reflected. These general relations
be derived analytically from the corresponding Eqs.~9!–~11!
in the limits z5sL→0,L.

.

FIG. 5. Longitudinal time delay distribution:t tot(s), solid line;
Re$tT(s)%, dash-dotted line; Re$tR(s)%, dotted line. The time de-
lays have been normalized to the single pass time delayDt0(s) and
the effective number of passesN(s) is shown. The four wave-
lengths marked in Fig. 4 are considered:~a! l1; ~b! l2; ~c! l3;
~d! l4.
4-6
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TIME DELAY DISTRIBUTION IN BRAGG GRATINGS PHYSICAL REVIEW E65 036604
The Bragg wavelength (l1) is presented in Fig. 5~a!,
while Fig. 5~c! shows the evolution at a wavelength corr
sponding to the time delay maximum and close to the fi
transmission resonance (l3). As expected, t tot(s)
.Re$tR(s)% whenRgr.1 andt tot(s).Re$tT(s)% whenTgr

.1. At the Bragg wavelength, the dwell time decays exp
nentially along the structure in accordance with the evan
cent propagation at this wavelength. Almost all the energ
stored in the first part of the grating. At the transmissi
resonance, instead, much higher energy storage is achie
since light is trapped in the grating center between t
highly reflective mirrors and constructive interference b
tween different paths takes place. Figures 5~b! and 5~d! refer
to wavelengthsl2 andl4 which have the same overall tim
delay t52.75 ps. However, the different scattering con
tions produce a completely different distribution of delay
side the structure and, therefore, different energy density
tributions. It is already apparent that each wavelength ‘‘se
the grating in a different way. This particular mapping c
potentially be used to characterize the grating along
length, to design different devices, or to understand the s
tral response differences under various perturbations
noise distributions.

Considering the transmission time delay, inside the b
gap @for l5l1, Fig. 5~a!# the light that passes through th
grating is mainly delayed at the edges of the structure. It
be shown that at this wavelength the multiple pathsucT,k(s)&
are interfering destructively for all layerss. Around the grat-
ing center, the destructive interference is almost comp
due to sufficient contributions from either side of the layer
actually gets more complete as the grating reflectivity
creases, since the number of interfering paths increa
Therefore, the corresponding time delay distribution goes
ymptotically to zero. As the grating edges are approach
however, the contributing paths are predominantly only fr
one side and the destructive interference becomes grad
incomplete. The time delay distribution at the grating end
therefore always finite. This picture is confirmed by comp
ing the time delay of different strength gratings, as shown
Fig. 6. The higher the reflectivity, the lower the transmiss
time delay in the structure center@Fig. 6~a!#, so that the in-
tegrated traversal time decreases for increasing gra
strength@Fig. 6~b!#. This phenomenon is typical of structure
with tunneling and/or evanescent wave propagation and
known as the ‘‘Hartman effect’’@30#. In sufficiently strong
gratings@R*0.7 in Fig. 6~b!#, this effect produces a trans
mission time delay that is actually shorter than the one
vacuum. Transmission under these circumstances has
interpreted as ‘‘superluminal’’@31,14,28#. In pulse transmis-
sion through periodic structures, it has been well establis
that ‘‘superluminal’’ effects are associated with lack of su
ficient destructive interference at the leading edge of
pulse and strong destructive interference during the main
ration of the pulse@15,14#. On the other hand, the pictur
presented shows that the Hartman effect and the assoc
superluminal effect under steady state conditions are du
strong and nearly complete destructive interference at
central part of the periodic structure and partial interfere
near its edges.
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Outside the band gap@for l5l3 and l5l4, Figs. 5~c!
and 5~d!#, the cavity round-trip reflectivityuru25R1R2 oscil-
lates along the structure. Different paths interfere constr
tively close to transmission resonances and destructiv
near transmissivity minima. Oscillating time delay contrib
tions are therefore obtained.

The reflection time delay does not allow a simple physi
interpretation. Qualitatively, Fig. 5 shows that inside t
band gap Re$tR(s)% is always positive, while as soon as th
wavelengthl moves outside the gap it can be shown tha
becomes negative in certain layers. In particular, it may
sume very high positive and negative values close to refl
tivity minima, as shown for the case ofl5l3. Again, this
nonintuitive behavior is related to interference effects. Co
sidering Fig. 3~b!, it is clear that the reflected compone
ucR,0(s)& does not contribute to the time delay directly b
only through interference at the beginning of the grating w
the other contributing paths. The real part of this interferen
contribution can be negative in general, keeping in mind
nonorthogonality of the field componentsucR,k(s)&, and can
produce a negative reflection time delay in the layer. Pu
propagation gives an intuitive explanation of this steady s
result. Negative time delays are associated with a reflec
pulse peak originating mainly in the leading edge of the
cident pulse. Therefore, the reflected peak leaves the con
ered layer before the incident peak actually enters it@32#.

IV. TIME DELAY DISTRIBUTION: GRATINGS WITH
SMALL PERTURBATIONS

The most commonly accepted approach to an opera
definition of time delay is to correlate the time spent by lig
in a certain region to the change in a physical quantity
duced by an external perturbation, when a direct and lin

FIG. 6. Transmission time delay distributions~a! and integrated
time delay ~b! at the Bragg wavelengthl1 for different strength
gratings: h R50.5; L R50.9; s R50.99; * R50.999; d R
50.9999. In~a! the effective number of passesNT(s) is shown in
units of Dt0(s). In ~b! the integrated time delay Re$tT% ~dashed
line! is normalized to the single pass time delayDt05neffL/c. The
solid line shows the traverse time in vacuum.
4-7
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FABIO GHIRINGHELLI AND MIKHAIL N. ZERVAS PHYSICAL REVIEW E 65 036604
relation can be inferred between such a change and the
of interaction. This approach originated from the problem
measuring the duration of quantum-mechanical collisio
and was first applied to the traversal time for particle tunn
ing by Büttiker and Landauer@33#. Different external pertur-
bations have been proposed in quantum mechanics~oscillat-
ing barrier@33#, time-modulated incident wave@34#, Larmor
precession of spin@26#!, and applied later in optics~introduc-
tion of lossy layers@18#, Faraday rotation@35#!. The com-
mon characteristic of the perturbation analysis is to obt
complex-valued interaction times, in which the real part c
be directly related to the classical time delay. In the follo
ing, the same kind of analysis will be applied to a localiz
region inside the grating, in close similarity to the Steinbe
approach@18#. It will be shown that clear physical meanin
is associated with both the real and imaginary parts of
local time delay obtained by the multiple path technique.

Let us introduce an infinitesimal phase perturbationdf in
a defined positions inside the grating. This kind of perturba
tion can easily be introduced in a grating by localized he
ing or strain, its effect is reversible, and experimental ver
cation of the simulated time delay distributions can
obtained by simply scanning the grating. For these reas
the insertion of a phase defect seems particularly attrac
and will be directly analyzed. Analogous results can be
rived by using other proposed perturbation schemes~local
variation of layer losses or local perturbation with an ext
nal magnetic field!, taking into account the different physica
quantities associated with them.

Using the Sec. II B formalism and Eq.~7b!, the transmis-
sion coefficientt is given by

tpert~s!5
t11t2ejdf

12r0ej 2df
, ~25a!

tgr~s!5
t11t2

12r0
~25b!

for the perturbed and unperturbed structures, respectivel
the unperturbed gratingdf50 and from Eq.~6! r05r 12r 2.
Using the Taylor expansions fordf→0 in the previous ex-
pressions, after a lengthy manipulation it is possible to w

tpert~s!

tgr~s!
.ejdf(11r0)/(12r0).ejdftT(s)/Dt0(s) , ~26!

wherer0.r5r 12r 2ej 2df for an infinitesimal perturbation
The reflection coefficient computation is similar, but ma
ematically more involved. From Eq.~8b! and using the same
approximations as before,

r pert~s!

r gr~s!
.ej 2df[T1 /(12r0)]r0 /(r02R1).ejdftR(s)/Dt0(s).

~27!

It is analytically confirmed that the effect of the perturbati
can be directly related to the complex time delays~9! and
~10!.
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Taking into account that the derived time delays are co
plex valued, the effect of the perturbation can be furth
analyzed. Considering a generic final transmission or refl
tion coefficient f 5t,r and remembering thatdf/Dt0(s)
5v0,

f pert~s!5 f gr~s!ejdft f (s)/Dt0(s)5 f gr~s!ej v0t f (s)

5 f gr~s!ej v0 Re$t f (s)%e2v0 Im$t f (s)%.

Using Fpert(s).Fgr1DF, whereF5u f u25T,R refers to ei-
ther transmissivity or reflectivity, it is easy to show th
ln@Fpert(s)/Fgr#.DF/Fgr and therefore

Df f~s!5v0 Re$t f~s!%, ~28!

DF~s!.22v0Fgr Im$t f~s!%, ~29!

where DF5DT,DR are the transmissivity and reflectivit
variations, respectively. Therefore both real and imagin
parts of the transmission and reflection time delays hav
precise physical meaning. Introducing a phase perturba
results in a phase change related to the real part of the
delay, while the amplitude change is related to the cor
sponding imaginary part. They are directly related to m
surable variations in the transmission and reflection coe
cients. Using Eq.~29!, it is quite straightforward to show tha
Eq. ~12b! results inDT1DR50, which is consistent with
the energy conservation principle.

Equation ~28! can also be derived from Eq.~24! using
intuitive arguments. The more times light crosses the lays
where the perturbation is located, the bigger phase shi
accumulated, so thatDf(s)5df N(s) where N(s) is the
effective number of passes in the layer.

The analysis developed by Steinberg@36,18# gives a the-
oretical interpretation of the effect described, using t
theory of ‘‘weak measurements’’ developed by Aharonov a
Vaidman@37#. In a classical quantum measurement theory
is not possible to get information both about the time sp
by light in a certain region and about the final transmitted
reflected state. The first measurement collapses the sy
status on the measured eigenstate and thus the system
lution is irreversibly altered. But if the measurement is s
ficiently ‘‘gentle’’ ~but therefore imprecise!, the system does
not collapse and both pieces of information~i.e., the weak
value of the time delay! can be obtained by averaging a larg
set of such measurements. The final result is in gener
complex number. The real part is related to the mean va
tion in the measured quantity~‘‘pointer’’ ! and gives the final
result of the measurement. The imaginary part is shown to
associated with the mean shift in the pointer conjugate m
mentum, which corresponds to the back action of the m
surement on the system. It can be thought of as a measu
how much the system has been perturbed.

According to the above definition, the perturbatio
scheme proposed in this section is a weak measurement
optical phase of light is the measurement pointer since
phase shift induced by the perturbed layer is used as a cl
The conjugate momentum is represented by the photon n
ber, i.e., the transmissivity and reflectivity of the grating. T
4-8
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TIME DELAY DISTRIBUTION IN BRAGG GRATINGS PHYSICAL REVIEW E65 036604
variationsDT andDR can be interpreted as the effects of t
perturbation introduced in the system by the measurem
and are proportional to the time delay imaginary part. T
theoretical approach also shows that correct results are
tained as long as the state of the system remains to a l
extent undisturbed by the measuring procedure. Theref
good agreement between the complex time delay distr
tions calculated with Eqs.~9! and ~10! and the effect of a
localized phase defect is expected where Im$t(s)% is small,
while differences are expected when the perturbation sig
cantly affects the grating. This is the case of a relativ
strong perturbation or a weak or strong perturbation near
transmission resonances.

This approach has been numerically tested on the unif
grating already described in Sec. III (L51000L, dn53
31023). A L/100-long nonscattering layer has been add
to the grating in different positions (0L,0.05L,0.1L, . . . ,L),
resulting in df5p/100.31 mrad. The smalldf value is
necessary to guarantee the weak measurement assum
The corresponding transmission and reflection phase va
tionsDf(s) are shown in Fig. 7~filled circles! and are com-
pared with the corresponding distributions obtained from
local time delay and Eq.~28! ~solid lines!. Three representa
tive wavelengths are considered~see Fig. 4!: l1, Bragg
wavelength;l3, time delay maximum~close to the transmis

FIG. 7. Transmission~left column! and reflection~right column!
phase variations induced by aL/100-long layer added to the gratin
~in mrad!. A uniform grating withL51000L, dn5331023, and
lBragg51550 nm has been simulated. The three different wa
lengths shown in Fig. 4 are represented:l1 ~upper row!, Bragg
wavelength;l3 ~central row!, transmission resonance;l4 ~lower
row!, first reflection sidelobe. Both the simulatedDf(s) ~filled
circles! and the values obtained from the real part of the time de
distributions and Eq.~28! ~solid lines! are shown.
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sion resonanceTgr51); l4, time delay minimum~first re-
flection sidelobe!. In Fig. 8, the amplitude variations~in dB!
corresponding to theL/100-long defect inclusion are show
in both transmission~left column! and reflection~right col-
umn!. Again, filled circles represent the perturbed grati
simulations and solid lines the results of time delay analy
given by Eq.~29!.

In transmission, Figs. 7~a! and 7~b! show that at the Bragg
wavelengthl1 the agreement is almost perfect, and mu
smaller phase variations are obtained in the center of
grating with respect to the sides. The experimental detec
of such a phase shift decrease can give direct evidenc
shorter interaction times of light in a periodic structure co
pared to free space propagation. Possibly, a direct proo
superluminal time of flight can be found in a sufficient
strong grating. In reflection the perturbation effect deca
almost exponentially along the grating length. As co
mented with respect to Fig. 5, it closely follows the loc
power distribution, since light is mainly reflected in the fir
section and cannot sample the end of the structure.

This intuitive ~but approximate! interpretation was first
proposed in Ref.@38#, where the reflection phase shift wa
related to the power distribution inside the grating. Go
fitting was obtained for wavelengths inside the band-gap
gion, but worse agreement was found close to the band-
edge. The approach presented here explains the limits of

-

y

FIG. 8. Transmissivity~left column! and reflectivity~right col-
umn! variation ~in dB! induced by the inclusion of aL/100-long
layer in the grating. The simulated grating is uniform withL
51000L, dn5331023, and lBragg51550 nm.l1 ~upper row!,
Bragg wavelength;l3 ~central row!, transmission resonance;l4

~lower row!, first reflection sidelobe. Both the values obtained fro
grating simulations~filled circles! and from the imaginary part o
the time delay distributions~29! ~solid lines! are shown.
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FABIO GHIRINGHELLI AND MIKHAIL N. ZERVAS PHYSICAL REVIEW E 65 036604
analysis and extends those results. Close correspondenc
tween the reflection time delay and power evolution is fou
inside the band gap, sincetR(s).t tot(s)}U(s) for R.1, as
shown in Fig. 5~a! and Eq.~21!. But further away from the
Bragg condition the existence of two different final sta
becomes important and the above approximation fails.
stead, the application of the local time delay distributi
gives good agreement even outside the band gap (l3 andl4,
central and lower rows in Fig. 7!, and it can be applied to
both reflected and transmitted light independently.

The nonperfect fit obtained forl3 and l4 is consistent
with the weak measurement theory. At the Bragg wavelen
l1 ~upper row!, Figs. 8~a! and 8~b! show that the induced
perturbation is negligible and excellent agreement betw
time delay computation and perturbation analysis is
pected. Close to the first reflection sidelobel4 and in par-
ticular to the first transmission resonancel3, much bigger
perturbations of the grating are obtained compared to
Bragg wavelength, and a worse agreement between th
and measurement is therefore expected. It is apparent tha
smoother the transmission and reflection spectra around
considered wavelength, the less any small variation affe
the final shape, and thus the better the time delay distribu
can be inferred from this kind of measurement. It is obvio
that further reducing the phase shift amplitude improves
fit that can be obtained at all wavelengths. But it has b
numerically verified that a good measurement of the theo
ical time delay distribution atl3 requiresdf as small as
p/500, which is not experimentally feasible.

Nevertheless, Fig. 7~d! clearly shows that forl5l3 the
experimental detection of positive phase shifts at the gra
far end (z→L) can be correlated with the nonintuitive ide
of negative interaction times of light in the perturbed regio

V. CONCLUSIONS

A method for local time delay characterization of period
scattering structures such as gratings has been develo
The grating is divided into small layers which can be co
sidered as free space regions. A multiple reflection appro
is used to calculate all the possible classical paths for b
transmitted and reflected light. This effective Fabry-Pe´rot
analysis allows a field decomposition in terms of comp
nents whose traversal time inside the layer is well defin
and the average time spent in the layer by transmitted
reflected light can be evaluated. A generally complex-valu
time is obtained, but clear physical meaning has been g
to both its real and imaginary parts. The real part is relate
the actual traversal time, while the imaginary part gives
extent of the back action of the measurement on the sys
Finally, the dwell time in the structure is derived by appr
priately weighting and summing up the two contribution
The dwell time is analytically shown to be always real, po
tive, and directly related to the power distribution inside t
grating in small index-contrast gratings.

The reflection and transmission time delays of a unifo
grating derived with this approach have been proved to ag
with those from standard techniques based on transfer m
calculations and phase derivatives. A possible measurem
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technique to obtain an experimental confirmation of the co
puted results has been discussed, with particular interes
superluminal propagation and negative time delay verifi
tion. Scanning a small phase shift along the grating has b
shown to produce a variation of the output optical phase
power proportional to the real and imaginary parts of t
local time delay, respectively. An experimental demonst
tion of the proposed technique has been reported elsew
@39# with respect to the time delay imaginary part.

The proposed theoretical model may prove to be a us
tool in the design of active devices~in cold cavity condi-
tions! and dispersion compensating gratings@8#. The point-
by-point analysis of the grating features can also be effec
in investigating local defects contribution in gratings~i.e.
unwanted phase shifts in standard writing techniques! or ro-
bustness analysis of non-standard grating design. The re
of Sec. IV can also be used to understand the effect of
tributed phase errors on the reflectivity and time delay sp
tra of Bragg gratings@40#. Such a detailed analysis will b
the subject of another publication.
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APPENDIX A: DERIVATION OF TIME DELAY
EXPRESSIONS

In the following a monochromatic excitationuc in&→Ein
5ej (bz2v0j) will be considered. Using the Eq.~1! formalism
and considering the time delay as a generic complex num
Eq. ~7b! allows the transmission delay computation:

^cTucT&5
ut11t2u2

u12ru2
5Tgr , ~A1a!

^cTu t̂T~s!ucT&5
t11* t2* e2 j f

12r 12* r 2* e2 j 2f (
k51

`

~2k21!Dt0~s!

3t11t2ej f@r 12r 2ej 2f#k21

5
ut11t2u2

12r*
Dt0~s!

11r

@12r#2
, ~A1b!

where r5r 12r 2ej 2f is the round-trip reflection coefficien
~6! and tT,k(s)5(2k21)Dt0(s) is the time delay for each
field componentucT,k(s)&. Dt0(s) is the time spent in the
layer in a single pass and (2k21) is the number of passe
before the photon is transmitted, as shown in Fig. 3~a!. Com-
bining Eqs.~A1a! and ~A1b! according to Eq.~1!, the ex-
pression for the transmission time delaytT(s) in layer s is

tT~s!5
^cTu t̂T~s!ucT&

^cTucT&
5Dt0~s!

11r

12r
. ~A2!

In general,tT(s) is a complex number whose real and imag
nary parts can be expressed as follows:
4-10
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Re$tT~s!%5Dt0~s!Tgr

12R1R2

T1T2
, ~A3a!

Im$tT~s!%52Dt0~s!Im$r%
Tgr

T1T2
, ~A3b!

whereT1 ,R1 andT2 ,R2 are the transmissivity and reflectiv
ity of the left and right reflectors, respectively. Equati
~A3a! shows that the real part of the transmission time de
is always positive.

With an analogous derivation starting from Eq.~8b! the
reflection time delaytR(s) can be computed:

^cRucR&5ur gru25Rgr5~12Tgr!, ~A4a!

^cRu t̂R~s!ucR&5r gr* F r 1101 (
k51

`

2kDt0~s!

3t11t12r 2ej 2f@r 12r 2ej 2f#k21G
5r gr* 2Dt0

t11t12r 2ej 2f

@12r#2
. ~A4b!

ucR,0(s)& is reflected before reaching layers and therefore
tR,0(s)50, while all the other components pass 2k times
throughs @see Fig. 3~b!#. The desired expression is

tR~s!5
^cRu t̂R~s!ucR&

^cRucR&

52Dt0~s!
r gr* ~ t11t12r 2ej 2f!/@12r#2

ur gru2
. ~A5!

With algebraic manipulation and using the reciprocity re
tion r 11 /t1152r 12* /t11* valid in the lossless case@19#, Eq.
~A5! can be simplified as follows:

tR~s!52Dt0~s!
T1

12r

r

r2R1
. ~A6!

The corresponding real and imaginary parts are found to

Re$tR~s!%5Dt0~s!
Tgr

T1T2
F12R1R21

R22R1

Rgr
G ,

~A7a!

Im$tR~s!%522Dt0~s!Im$r%
Tgr

T1T2

Tgr

Rgr
. ~A7b!

The total timet tot(s) spent in sections by a photon is
given by the average value oftT(s) andtR(s), weighted by
the final state probabilityTgr or Rgr . After an algebraic ma-
nipulation its concise expression results:
03660
y

-

e

t tot~s!5tT~s!Tgr1tR~s!Rgr

5Dt0~s!Tgr

11R2

12R2
, ~A8!

where the relations uru25R1R2 and Rgr5uR12ru2/
u12ru2R1 @easily derived from the reflection coefficientr gr
definition ~8b!# have been used.

APPENDIX B: Reˆt f‰Ätphase IN UNIFORM GRATINGS:
ANALYTIC PROOF

The equivalence between the multiple path approach
the classical phase time delaytphase5]u/]v @3# can be ana-
lytically proved only in the special case of a uniform gratin

Taking into account the former approach and layers
infinitesimal lengthdz, the single pass time delay isDt0
5neffdz/c and the summation in Eq.~13! has to be replaced
by integration over the grating lengthL. If the transmission
time delay Re$tT% is considered, it is convenient to expre
Eq. ~A3a! in terms of the left and right reflector transmissiv
ties T1(z) andT2(z):

Re$tT%5E
0

L neff

c
Tgr

T1~z!1T2~z!2T1~z!T2~z!

T1~z!T2~z!
dz.

~B1!

The generic transmissivityT for a uniform grating of length
D is given by@3#

T5utu25
~g/k!2

cosh2~gD!2~ ŝ/k!2
, ~B2!

whereD5L,z,(L2z) for Tgr ,T1(z),T2(z), respectively,ŝ
is the effective detuning from the Bragg wavelength,k is the

grating coupling constant, andg5Ak22ŝ2 @3#. The integra-
tion of Eq. ~B1! gives the following expression for the inte
grated transmission time delay:

Re$tT%5
neffL

c

@sinh~2gL !#/2gL2~ ŝ/k!2

cosh2~gL !2~ ŝ/k!2
. ~B3!

If the reflection time delay Re$tR% is considered, the integra
tion of Eq. ~A7a! over the grating lengthL gives

Re$tR%5Re$tT%1
neff

c

Tgr

Rgr
E

0

L R2~z!2R1~z!

T1~z!T2~z!
dz, ~B4!

whereR1(z) and R2(z) are the reflectivities of the left and
right reflectors. The integrand function in Eq.~B4! is an odd
function with respect toz5L/2, sinceT1(z)5T2(L2z) and
R1(z)5R2(L2z) in a symmetric structure. Therefore the in
tegral is equal to 0 and

Re$tR%5Re$tT%. ~B5!

Finally, it is straightforward from Eq.~A8! to show that even
t tot5Re$tT%.
4-11
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The derivation of the phase time delay is algebraica
more involved. Starting from the analytic expression of t
coefficientstgr and r gr of a uniform grating@3#, it is easy to
recognize that the transmission and reflection phasesuT and
uR are equal apart from a constant factor. Therefore, the
responding transmission and reflection time delaystphase
5]u f /]v are equal and equal to the total time delay, as
clear from Eq.~11!. The corresponding expression is

tphase5
]

]v H arctanF ŝg tanh~gL !G J . ~B6!

Performing the differentiation and taking into account th
]ŝ/]v5neff /c, the total time delay is found to be@41#

Re$tR%5
neffL

c

@sinh~2gL !#/2gL2~ ŝ/k!2

cosh2~gL !2~ ŝ/k!2
. ~B7!

The equivalence betweent tot , Re$tT%, Re$tR%, andtphaseat
every wavelength is analytically proved by Eqs.~B3! and
~B7!. It has to be noted that the average refractive indexneff
has been used and the longitudinal modulationneff(z) has
been disregarded in this derivation. Therefore, the analyt
results presented are valid in the small index-contrast
proximation only~see Sec. II C!.

APPENDIX C: LOCAL DWELL TIME DERIVATION
AND PHYSICAL INTERPRETATION

The dwell timetD associated with a generic cavity can
interpreted as the time necessary to empty the cavity itse
steady state conditions. The same physical meaning ca
extended to the local dwell timetD(s)5t tot(s) introduced
.

n.

n

03660
y
e

r-

s

t

al
p-

in
be

by Eq.~20! by considering a generic layers of lengthDL(s)
and the associated Fabry-Pe´rot cavity. The stored energy i
U(s)DL(s) and the flux leaving the layer is given b
Sout(s)5S1(s)1S2(s), where both the counterpropagatin
fields E1(s) and E2(s) given by Eq.~16! are considered.
But Sout(s) takes into account even photons that will be sc
tered during the propagation and will reenter layers. This
means that these photons do not actually contribute to en
removal from the analyzed layer and therefore must not
accounted for in the dwell time computation. The fields a
sociated with photons that will not be further scattered a
reenter the layers are therefore

Ẽ1~s!5E1~s!t25ET , ~C1a!

Ẽ2~s!5E2~s!t121Einr 115ER , ~C1b!

and correspond to the transmitted and reflected fields, a
easily verified from Eqs.~7b!, ~8b!, and ~16!. It is worth
noting that interference in the backward direction betwe
photons leaving sections and photons scattered back befo
reachings has to be considered. Using Eq.~C1! and consid-
ering the correct Poynting vector fluxes, the outgoing as
ciated fluxS̃1(s)1S̃2(s)5ST1SR is constant, independen
of the layer position, and equal toSin because of energy
conservation. Therefore, applying the general definition
dwell time to each layer, the local dwell timetD(s) is

tD~s!5
U~s!DL~s!

S̃11S̃2

5
W~s!

Sin
, ~C2!

and the formal relation introduced in Eqs.~20! and ~21! is
proved.
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@33# M. Büttiker and R. Landauer, Phys. Rev. Lett.49, 1739~1982!.
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